Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,2,3,6,7,8-Hexahydrocinnolino[5,4,3cde]cinnoline

Zhi-Qiang Gao

College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, People's Republic of China
Correspondence e-mail: haowenjuanxz@126.com

Received 23 December 2008; accepted 27 December 2008

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.123$; data-to-parameter ratio $=9.2$.

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}$, was synthesized by the reaction of hydrazine hydrate and 9-methyl-3,4,6,7-tetra-hydro- 2 H -xanthene- $1,8(5 H, 9 H)$-dione in ethanol. In the crystal, the molecule lies across an inversion centre. The pyridazine rings are coplanar and the C_{6} rings adopt envelope conformations.

Related literature

For the biological properties of cinnoline and its derivatives, see: Abdelrazek et al. (2006); Gomtsyan et al. (2005); Inoue et al. (1993); Lewgowd \& Stanczak (2007); Lewgowd et al. (2005); Singh et al. (2003); Stefanska et al. (2003); Tutsumi et al. (1992).

Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}$

$$
M_{r}=212.26
$$

Monoclinic, $P 2_{1} / c$
$a=9.698$ (5) A
$Z=2$
$b=5.875$ (3) \AA
$c=10.023$ (5) \AA
$\beta=117.314(6)^{\circ}$
$V=507.4(4) \AA^{3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.55 \times 0.41 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.953, T_{\text {max }}=0.992$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 97$ parameters
$w R\left(F^{2}\right)=0.123 \quad$ All H-atom parameters refined
$S=1.01$
890 reflections
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2750).

References

Abdelrazek, F. M., Metz, P., Metwally, N. H. \& El-Mahrouky, S. F. (2006). Arch. Pharm. 339, 456-460.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Gomtsyan, A. et al. (2005). Med. Chem. 48, 744-752.
Inoue, S., Yasaki, A., Mochizuki, H., Tutsumi, H., Murata, M. \& Sakane, K. (1993). Japanese Patent No. 05213951.

Lewgowd, W. \& Stanczak, A. (2007). Arch. Pharm. 340, 65-80.
Lewgowd, W., Stanczak, A., Ochocki, Z., Krajewska, U. \& Rozalski, M. (2005). Acta Pol. Pharm. 62, 105-110.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Singh, S. K., Ruchelman, A. L., Zhou, N., Li, T.-K., Liu, An., Liu, L. F. \& Lavoie, E. J. (2003). Med. Chem. Res. 12, 1-12.
Stefanska, B., Arciemiuk, M., Bontemps-Gracz, M. M., Dzieduszycka, M., Kupiec, A., Martelli, S. \& Borowski, E. (2003). Bioorg. Med. Chem. 11, 561572.

Tutsumi, H., Terasawa, T., Barret, D., Mutata, M., Sakane, K., Yazaki, A. \& Inoue, S. (1992). Japanese Patent No. 9215584; Chem. Abstr. 118, 254944w.

supplementary materials

1,2,3,6,7,8-Hexahydrocinnolino[5,4,3-cde]cinnoline

Z.-Q. Gao

Comment

It is well known that six-membered nitrogen-containing heterocycles are abundant in numerous natural products that exhibit important biological properties. For example, cinnolines and their derivatives exhibit a diverse range of biological properties (Lewgowd \& Stanczak, 2007) such as molluscicidal activity (Abdelrazek et al., 2006), cytotoxic activity (Lewgowd et al., 2005), transient receptor potential vanilloid 1 (TRPV1) receptor antagonists (Gomtsyan et al., 2005), and topoisomerase I (TOP1)-targeting activity and cytotoxicity (Singh et al., 2003). They also acted as anticancer agents active on a multidrug resistant cell line (Stefanska et al., 2003). They can also be used as bactericides in pharmaceutical industry (Inoue et al., 1993; Tutsumi et al.,1992). The chemistry of cinnolines has received much attention based on the above facts.

The title molecule lies across an inversion centre (Fig. 1). The two pyridazine rings ($\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 2 \mathrm{~A} / \mathrm{C} 3 \mathrm{~A} / \mathrm{N} 2 / \mathrm{N} 1$ and $\mathrm{C} 1 \mathrm{~A} /$ $\mathrm{C} 2 \mathrm{~A} / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 2 \mathrm{~A} / \mathrm{N} 1 \mathrm{~A})$ are conjugated and are coplanar. The two cyclohexene rings ($\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}$) adopt envelope conformations, with atoms C 5 and C5A deviate from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 6$ and $\mathrm{C} 1 \mathrm{~A} / \mathrm{C} 2 \mathrm{~A} / \mathrm{C} 3 \mathrm{~A} / \mathrm{C} 4 \mathrm{~A} / \mathrm{C} 6 \mathrm{~A}$ planes by 0.656 (3) and 0.656 (3) \AA, respectively.

A view of the crystal packing is shown in Fig.2.

Experimental

The title compound was prepared by the reaction of 3,4,6,7-tetrahydro -9-methyl-2H-xanthene-1,8(5H,9H)-dione (2 mmol) and hydrazine hydrate $80 \%(8 \mathrm{mmol}$) in ethanol (8 ml) stirring at 353 K (yield 84%; m.p. $543-544 \mathrm{~K}$). Single crystals suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation.

Refinement

All H atoms were located in a difference Fourier map and refined freely $[\mathrm{C}-\mathrm{H}=0.95$ (2)-1.04 (2) \AA].

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (1-x, -y, 1-z).

supplementary materials

Fig. 2. Molecular packing in the title compound, viewed approximately along the a axis.

1,2,3,6,7,8-Hexahydrocinnolino[5,4,3-cde]cinnoline

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}$
$M_{r}=212.26$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.698(5) \AA$
$b=5.875(3) \AA$
$c=10.023(5) \AA$
$\beta=117.314(6)^{\circ}$
$V=507.4(4) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.953, T_{\text {max }}=0.992$
2508 measured reflections
$F_{000}=224$
$D_{\mathrm{x}}=1.389 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=543-544 \mathrm{~K}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 734 reflections
$\theta=2.4-26.3^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colourless
$0.55 \times 0.41 \times 0.09 \mathrm{~mm}$

890 independent reflections
575 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\min }=4.1^{\circ}$
$h=-11 \rightarrow 11$
$k=-6 \rightarrow 6$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.123$
$S=1.01$
890 reflections
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0655 P)^{2}+0.0552 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.16 \mathrm{e}^{\AA^{-3}}$

sup-2

97 parameters
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
N1	$0.7159(2)$	$-0.2597(3)$	$0.65617(19)$	$0.0547(6)$
N2	$0.5861(2)$	$-0.3398(3)$	$0.66438(18)$	$0.0555(6)$
C1	$0.7050(2)$	$-0.0820(4)$	$0.5729(2)$	$0.0466(6)$
C2	$0.56377(19)$	$0.0384(3)$	$0.49395(18)$	$0.0390(5)$
C3	$0.5474(2)$	$0.2352(3)$	$0.4062(2)$	$0.0450(5)$
C4	$0.6864(3)$	$0.3211(5)$	$0.3949(3)$	$0.0581(7)$
C5	$0.8354(3)$	$0.2567(4)$	$0.5326(3)$	$0.0647(7)$
C6	$0.8445(3)$	$0.0004(4)$	$0.5597(3)$	$0.0621(7)$
H1	$0.682(2)$	$0.250(4)$	$0.305(3)$	$0.065(6)^{*}$
H2	$0.678(2)$	$0.487(4)$	$0.382(2)$	$0.076(7)^{*}$
H3	$0.930(3)$	$0.308(4)$	$0.522(3)$	$0.086(8)^{*}$
H4	$0.839(3)$	$0.340(4)$	$0.623(3)$	$0.079(7)^{*}$
H5	$0.846(2)$	$-0.086(4)$	$0.470(2)$	$0.072(7)^{*}$
H6	$0.936(3)$	$-0.039(4)$	$0.649(3)$	$0.081(7)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0567(12)$	$0.0508(12)$	$0.0500(10)$	$0.0164(9)$	$0.0187(9)$	$0.0061(8)$
N 2	$0.0652(12)$	$0.0458(11)$	$0.0474(11)$	$0.0115(9)$	$0.0189(9)$	$0.0086(8)$
C1	$0.0501(12)$	$0.0467(12)$	$0.0395(10)$	$0.0102(10)$	$0.0175(9)$	$-0.0019(10)$
C2	$0.0445(11)$	$0.0386(11)$	$0.0306(9)$	$0.0072(8)$	$0.0146(8)$	$-0.0029(8)$
C3	$0.0574(13)$	$0.0386(12)$	$0.0351(10)$	$0.0051(10)$	$0.0178(9)$	$-0.0010(9)$
C4	$0.0737(17)$	$0.0505(15)$	$0.0555(14)$	$-0.0061(12)$	$0.0344(13)$	$-0.0027(12)$
C5	$0.0595(15)$	$0.0680(17)$	$0.0681(16)$	$-0.0087(13)$	$0.0306(13)$	$-0.0101(13)$
C6	$0.0484(14)$	$0.0707(18)$	$0.0650(16)$	$0.0111(11)$	$0.0242(13)$	$-0.0033(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C1
1.310 (3)

C4-C5
1.518 (3)

supplementary materials

N1-N2	1.381 (2)	$\mathrm{C} 4-\mathrm{H} 1$	0.98 (2)
$\mathrm{N} 2-\mathrm{C} 3{ }^{\text {i }}$	1.309 (3)	C4-H2	0.98 (2)
C1-C2	1.417 (3)	C5-C6	1.526 (3)
C1-C6	1.499 (3)	C5-H3	1.01 (2)
$\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	1.373 (3)	C5-H4	1.01 (2)
C2-C3	1.417 (3)	C6-H5	1.04 (2)
$\mathrm{C} 3-\mathrm{N} 2^{\text {i }}$	1.309 (3)	C6-H6	0.95 (2)
C3-C4	1.492 (3)		
C1-N1-N2	120.01 (17)	C5-C4-H2	111.0 (13)
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{N} 1$	120.67 (18)	$\mathrm{H} 1-\mathrm{C} 4-\mathrm{H} 2$	109.4 (18)
N1-C1-C2	121.89 (19)	C4-C5-C6	111.2 (2)
N1-C1-C6	120.07 (18)	C4-C5-H3	111.1 (13)
C2-C1-C6	118.0 (2)	C6-C5-H3	109.2 (14)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3$	118.3 (2)	C4-C5-H4	108.6 (14)
$\mathrm{C} 2{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 1$	117.8 (2)	C6-C5-H4	110.1 (13)
C3-C2-C1	123.94 (17)	H3-C5-H4	106.5 (19)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	121.33 (19)	C1-C6-C5	110.70 (19)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4$	120.3 (2)	C1-C6-H5	107.1 (12)
C2-C3-C4	118.39 (18)	C5-C6-H5	110.5 (12)
C3-C4-C5	111.3 (2)	C1-C6-H6	109.2 (14)
C3-C4-H1	105.8 (12)	C5-C6-H6	111.1 (15)
C5-C4-H1	110.6 (12)	H5-C6-H6	108.2 (19)
C3-C4-H2	108.6 (13)		

Fig. 1

Fig. 2

